| Surname     | Centre<br>Number | Candidate<br>Number |
|-------------|------------------|---------------------|
| Other Names |                  | 2                   |



#### GCE AS/A level

1091/01



## CHEMISTRY - CH1

A.M. FRIDAY, 22 May 2015

1 hour 30 minutes

Section A
Section B

#### **ADDITIONAL MATERIALS**

In addition to this examination paper, you will need a:

- · calculator:
- copy of the Periodic Table supplied by WJEC.
   Refer to it for any relative atomic masses you require.

| For Examiner's use only |                 |                 |  |  |
|-------------------------|-----------------|-----------------|--|--|
| Question                | Maximum<br>Mark | Mark<br>Awarded |  |  |
| 1. to 4.                | 10              |                 |  |  |
| 5.                      | 11              |                 |  |  |
| 6.                      | 12              |                 |  |  |
| 7.                      | 14              |                 |  |  |
| 8.                      | 19              |                 |  |  |
| 9.                      | 14              |                 |  |  |
| Total                   | 80              |                 |  |  |

#### **INSTRUCTIONS TO CANDIDATES**

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

**Section A** Answer **all** questions in the spaces provided.

**Section B** Answer **all** questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**.

#### INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The QWC label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.



### **SECTION A**

Answer all questions in the spaces provided.

| 1. | Complete the table below to show the composition of the following species. | [2] |
|----|----------------------------------------------------------------------------|-----|
|    |                                                                            | L-7 |

| Species                        | Protons | Neutrons | Electrons |
|--------------------------------|---------|----------|-----------|
| <sup>20</sup> <sub>10</sub> Ne |         |          |           |
| <sup>18</sup> O <sup>2-</sup>  |         |          |           |

| 2. | The isotope <sup>226</sup> Ra | is radioactive. I | lt decays by | y $lpha$ -emission : | and has a | half-life of | 1600 <u>j</u> | years. |
|----|-------------------------------|-------------------|--------------|----------------------|-----------|--------------|---------------|--------|
|    |                               |                   |              |                      |           |              |               |        |

| (a) | Give the mass number and symbol of the species formed by the loss of one $\alpha$ -part from an atom of $^{226}\mbox{Ra}$ . | icle<br>[1] |
|-----|-----------------------------------------------------------------------------------------------------------------------------|-------------|
| (b) | State what is meant by the term half-life.                                                                                  | [1]         |
|     |                                                                                                                             |             |

| (c) | A sample of <sup>226</sup> Ra, of initial mass 1.00 g, decays for 3 200 years.    |     |
|-----|-----------------------------------------------------------------------------------|-----|
|     | Calculate the number of <b>moles</b> of <sup>226</sup> Ra left after this period. | [2] |

| Number of moles = | mo   |
|-------------------|------|
|                   | <br> |



**PMT** 

- 3. Methanoic acid is the simplest carboxylic acid and occurs naturally, most notably in ant venom. It has a molar mass of 46.02 g mol<sup>-1</sup>.
  - (a) State what is meant by *molar mass*. [1]
  - (b) Use the values in the table below to calculate the enthalpy change of formation for methanoic acid. [1]

C(s) + 
$$H_2(g)$$
 +  $1\frac{1}{2}O_2(g)$  HCOOH(I) +  $\frac{1}{2}O_2(g)$ 

$$CO_2(g) + H_2O(I)$$

| Substance      | Enthalpy change of combustion, $\Delta H_c^{\theta}$ / kJ mol <sup>-1</sup> |
|----------------|-----------------------------------------------------------------------------|
| С              | -394                                                                        |
| H <sub>2</sub> | -286                                                                        |
| нсоон          | -263                                                                        |

$$\Delta H_f^{\theta}$$
 = .....kJ mol<sup>-1</sup>

© WJEC CBAC Ltd.

| (a) | Suggest a method for measuring the rate of this reaction. [1]                                                                                                                              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) | State, giving a reason, what effect using 100 cm <sup>3</sup> of hydrochloric acid solution of concentration 2.0 mol dm <sup>-3</sup> would have on the initial rate of this reaction. [1] |
|     | Section A Total [10]                                                                                                                                                                       |
|     |                                                                                                                                                                                            |
|     |                                                                                                                                                                                            |
|     |                                                                                                                                                                                            |
|     |                                                                                                                                                                                            |
|     |                                                                                                                                                                                            |
|     |                                                                                                                                                                                            |
|     |                                                                                                                                                                                            |
|     |                                                                                                                                                                                            |
|     |                                                                                                                                                                                            |



© WJEC CBAC Ltd.

## **BLANK PAGE**

# PLEASE DO NOT WRITE ON THIS PAGE

1091

PMT

#### **SECTION B**

Answer all questions in the spaces provided.

**5.** (a) Electrons are arranged in energy levels. The diagram below shows two electrons in the 1s level in a nitrogen atom.



Complete the diagram for the electrons in a nitrogen atom by labelling the sub-shell levels and showing how the electrons are arranged. [2]

- (b) Nitrogen forms several oxides.
  - (i) An oxide of nitrogen contains 25.9% by mass of nitrogen. Calculate the empirical formula of this oxide. [2]

Empirical formula

(ii) Dinitrogen oxide is formed when ammonia is oxidised.

...... $NH_3 + ...... O_2 \longrightarrow ..... N_2O + ...... H_2O$ 

Balance the equation above.

[1]



1091 010007

PMT

$$2Ca(NO_3)_2(s)$$
  $\longrightarrow$   $2CaO(s) + 4NO_2(g) + O_2(g)$ 

Calculate the total volume of gas, measured at room temperature and pressure, which would be produced when 0.886 g of calcium nitrate decomposes. [3]

[1 mol of gas occupies 24.0 dm<sup>3</sup> at room temperature and pressure]

(c) Hydrated calcium nitrate can be represented by the formula  $Ca(NO_3)_2.xH_2O$ .

A 6.04 g sample of  $Ca(NO_3)_2.xH_2O$  contains 1.84 g of water of crystallisation.

Calculate the value of x in Ca(NO<sub>3</sub>)<sub>2</sub>.xH<sub>2</sub>O. You **must** show your working. [3]

x = .....

Total [11]



**6.** Ionisation energies and atomic spectra provide evidence for the arrangement of electrons in atoms.

(a) The following diagram shows the first ionisation energies of the Period 3 elements.





PMT

|               | С |
|---------------|---|
|               |   |
| $\overline{}$ | C |
| 6             |   |
| 0             |   |
| $\overline{}$ | C |

|                 | (ii)<br>(iii) | Draw a cross or<br>Explain why the<br>phosphorus. |              |                |               |               |            |
|-----------------|---------------|---------------------------------------------------|--------------|----------------|---------------|---------------|------------|
| <br><br>(b) The | The           | table below gives                                 | some ionisa  | ition energies | for magnesi   | um.           | 5th        |
|                 | lo            | nisation energy/<br>kJ mol <sup>-1</sup>          | 736          | 1450           |               | 10 500        | 13 629     |
|                 | (i)           | Explain why the                                   | second ionis | sation energy  | is greater th | an the first. |            |
|                 | (ii)          | Complete the t magnesium.                         | able by suç  | ggesting a va  | alue for the  | third ionisat | tion energ |



| (c)   | formed and spectrum. | erly now the | nes in the | visible<br>closer | atomic emiss<br>together at t | sion spec<br>the high | trum of hyd<br>frequency | drogen are<br>end of the<br>[4]<br>QWC [1] |
|-------|----------------------|--------------|------------|-------------------|-------------------------------|-----------------------|--------------------------|--------------------------------------------|
|       |                      |              |            |                   |                               |                       |                          |                                            |
|       |                      |              |            |                   |                               |                       |                          |                                            |
|       |                      |              |            |                   |                               |                       |                          |                                            |
| ••••• |                      |              |            |                   |                               |                       |                          |                                            |
|       |                      |              |            |                   |                               |                       |                          |                                            |
|       |                      |              |            |                   |                               |                       |                          | Total [12]                                 |
|       |                      |              |            |                   |                               |                       |                          |                                            |
|       |                      |              |            |                   |                               |                       |                          |                                            |
|       |                      |              |            |                   |                               |                       |                          |                                            |
|       |                      |              |            |                   |                               |                       |                          |                                            |
|       |                      |              |            |                   |                               |                       |                          |                                            |
|       |                      |              |            |                   |                               |                       |                          |                                            |
|       |                      |              |            |                   |                               |                       |                          |                                            |
|       |                      |              |            |                   |                               |                       |                          |                                            |
|       |                      |              |            |                   |                               |                       |                          |                                            |
|       |                      |              |            |                   |                               |                       |                          |                                            |



© WJEC CBAC Ltd.

PMT

## **BLANK PAGE**

# PLEASE DO NOT WRITE ON THIS PAGE



| xai | mi  | 'n | e |
|-----|-----|----|---|
|     | nl۱ |    | _ |
| - 0 | 111 | v  |   |

| 7. | (a) | Its n<br>a so<br>10 y | ame derives fro<br>lid mineral, as | m the Greek wor opposed to potas         | the Swedish chend lithos, meaning 's ssium, which had by lithium is compo | stone', to reflect its<br>been isolated from | discovery in plant ashes |
|----|-----|-----------------------|------------------------------------|------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|--------------------------|
|    |     | In a                  | mass spectrom                      | eter, a sample of I                      | ithium must be ionis                                                      | sed before it can be                         | analysed.                |
|    |     | (i)                   | Describe how spectrometer.         | vaporised atom                           | s of Li are conve                                                         | erted into Li <sup>+</sup> ions              | in a mass<br>[2]         |
|    |     | (ii)                  | Suggest why lithium.               | no more than the                         | minimum energy i                                                          | s used to ionise th                          | e sample of              |
|    |     | (iii)                 |                                    | erence, if any, b<br>ving a reason for y | etween the chemiorour answer.                                             | cal properties of t                          | he isotopes<br>[2]       |
|    | (b) | The                   | mass spectrum                      | of a naturally occ                       | urring sample of lith                                                     | nium gave the follow                         | ving results.            |
|    |     |                       |                                    | Isotope                                  | % abundance                                                               |                                              |                          |
|    |     |                       |                                    | <sup>6</sup> Li                          | 7.25                                                                      |                                              |                          |
|    |     |                       |                                    | <sup>7</sup> Li                          | 92.75                                                                     |                                              |                          |
|    |     | The:                  |                                    |                                          | ne the relative atom                                                      | ic mass of the lithiu                        | ım sample.<br>[2]        |
|    |     |                       |                                    |                                          | Relative a                                                                | tomic mass =                                 |                          |
|    |     |                       |                                    |                                          |                                                                           |                                              |                          |



© WJEC CBAC Ltd.

| rhich of the Li <sup>+</sup> ions formed from the isotopes of Li will be deflected<br>ectrometer. [1]   | (ii)           |
|---------------------------------------------------------------------------------------------------------|----------------|
| with ammonium sulfate to form ammonia, lithium sulfate and uation below.                                |                |
| iOH → 2NH <sub>3</sub> + Li <sub>2</sub> SO <sub>4</sub> + 2H <sub>2</sub> O                            |                |
| nium sulfate reacted exactly with 29.80 cm <sup>3</sup> of a lithium hydroxide                          | A 2.0<br>solut |
| bunt, in moles, of $(NH_4)_2SO_4$ in 2.06g of ammonium sulfate. o <b>three</b> significant figures. [2] | (i)            |
| Number of moles = mol                                                                                   |                |
| entration, in mol dm <sup>-3</sup> , of the lithium hydroxide solution used.<br>[2]                     | (ii)           |
| Concentration = mol dm <sup>-3</sup>                                                                    |                |
| entage atom economy for the production of ammonia in the ammonium sulfate and lithium hydroxide. [2]    | (iii)          |
|                                                                                                         |                |
| Atom economy = %                                                                                        |                |
| Total [14]                                                                                              |                |



| 8. | (a)   | that the use of foss                   | nsure a secure supply of energy in the future. It has been suggested il fuels should be reduced, the use of renewable energy increased and cy should be greatly improved. |
|----|-------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |       | By considering bot that these suggesti | h the benefits and the difficulties involved, discuss whether you think ons are realistic. [4] QWC [1]                                                                    |
|    |       |                                        |                                                                                                                                                                           |
|    |       |                                        |                                                                                                                                                                           |
|    | ••••• |                                        |                                                                                                                                                                           |
|    |       |                                        |                                                                                                                                                                           |
|    |       |                                        |                                                                                                                                                                           |
|    |       |                                        |                                                                                                                                                                           |
|    |       |                                        |                                                                                                                                                                           |
|    |       |                                        |                                                                                                                                                                           |
|    | ••••• |                                        |                                                                                                                                                                           |
|    | (b)   | Nitric acid is produ                   | ced by the Ostwald process.                                                                                                                                               |
|    |       | The first stage invo                   | lves the oxidation of ammonia over a platinum/rhodium catalyst.                                                                                                           |
|    |       | ammor                                  | ia + oxygen <del>←</del> nitric oxide + water                                                                                                                             |
|    |       | The graph below s and pressure used    | hows how the yield of nitric oxide, NO, depends on the temperature in its production.                                                                                     |
|    |       |                                        | 4                                                                                                                                                                         |
|    |       |                                        |                                                                                                                                                                           |
|    |       |                                        |                                                                                                                                                                           |
|    |       | Yield of NO                            |                                                                                                                                                                           |
|    |       |                                        | 600°C                                                                                                                                                                     |
|    |       |                                        | 800°C<br>— 1000°C                                                                                                                                                         |
|    |       |                                        | 1000 G                                                                                                                                                                    |
|    |       |                                        | Pressure                                                                                                                                                                  |
|    |       |                                        |                                                                                                                                                                           |



© WJEC CBAC Ltd.

| (i)   | l.<br> | State the general variations in this yield with temperature and pressure                                                                      | e. [1]                     |
|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|       | II.    | Use the graphs to explain whether the reaction is endothermic or exoth and whether there are more moles of gaseous products than reactants QI | nermic<br>s. [4]<br>WC [1] |
|       |        |                                                                                                                                               |                            |
| (ii)  | Norn   | mally the process is carried out at a temperature of around 900°C.<br>gest why this temperature is used.                                      | [2]                        |
|       | State  | e the tune of catalyst used                                                                                                                   |                            |
| (111) | State  | e the <b>type</b> of catalyst used.                                                                                                           | [1]                        |



© WJEC CBAC Ltd. (1091-01) Turn over.

(v) The next stage in the Ostwald process is to convert the nitric oxide to nitrogen dioxide.

2NO(g) + O<sub>2</sub>(g) 
$$\longrightarrow$$
 2NO<sub>2</sub>(g)  $\Delta H = -114 \text{ kJ mol}^{-1}$ 

Sketch on the axes below the energy profile for this reaction, clearly labelling the enthalpy change of reaction,  $\Delta H$ . [2]



(vi) Write an expression that connects the enthalpy change of a reaction,  $\Delta H$ , with the activation energies of the forward (E<sub>f</sub>) and reverse (E<sub>b</sub>) reactions. [1]

Total [19]

16

## **BLANK PAGE**

# PLEASE DO NOT WRITE ON THIS PAGE



Zac was asked to measure the molar enthalpy change of neutralisation of sodium hydroxide by hydrochloric acid.

$$NaOH(aq) + HCI(aq) \longrightarrow NaCI(aq) + H2O(I)$$

He was told to use the following method:

- Measure 25.0 cm<sup>3</sup> of sodium hydroxide solution of concentration 0.970 mol dm<sup>-3</sup> into a polystyrene cup.
- Measure the temperature of the solution.
- Place the hydrochloric acid solution into a suitable container and measure the temperature of the solution.
- When the temperatures of both solutions are equal add 5.00 cm<sup>3</sup> of hydrochloric acid to the sodium hydroxide and stir.
- Measure the temperature of the mixture.
- Keep adding 5.00 cm<sup>3</sup> portions of hydrochloric acid, until 50.0 cm<sup>3</sup> have been added, stirring and measuring the temperature each time.

Zac's results are shown on the graph below.





© WJEC CBAC Ltd.

| (a) | Suggest why it is important that the hydrochloric acid and the sodium hydroxide are at the same temperature. [1]                                        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) | By drawing lines of best fit for both sets of points determine:                                                                                         |
|     | (i) the maximum temperature <b>change</b> [2]                                                                                                           |
|     | Maximum temperature rise from the graph =°C                                                                                                             |
|     | (ii) the volume of acid required to neutralise the sodium hydroxide. [1]                                                                                |
|     | Volume of acid = cm <sup>3</sup>                                                                                                                        |
| (c) | Use your value from part (b)(ii) to calculate the concentration, in mol dm <sup>-3</sup> , of the hydrochloric acid solution. [2]                       |
|     | Concentration = mol dm <sup>-3</sup>                                                                                                                    |
| (d) | Use <b>both</b> values from part (b) to calculate the heat given out during <b>this</b> experiment.                                                     |
|     | [Assume that the density of the solution is 1.00 g cm <sup>-3</sup> and that its specific heat capacity is 4.18 J K <sup>-1</sup> g <sup>-1</sup> ] [1] |
|     | Heat given out =                                                                                                                                        |
| (e) | Calculate the molar enthalpy change, $\Delta H$ , for the reaction between sodium hydroxide and hydrochloric acid. [2]                                  |
|     | $\Delta H =$ kJ mol <sup>-1</sup>                                                                                                                       |



| (f)     | Name a piece of apparatus that Zac could use to measure exactly 25.0 cm <sup>3</sup> of the sodium hydroxide solution. [1]                              |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| (g)<br> | Explain why the temperature falls on continuing to add hydrochloric acid <b>after</b> the maximum temperature has been reached. [2]                     |
| 'h)     | The data book value for this molar enthalpy change of neutralisation is more exothermic                                                                 |
|         | than Zac's value.  State the <b>main</b> reason for the difference between the values and suggest <b>one</b> change that would improve his result.  [2] |
|         | Total [14]                                                                                                                                              |
|         | Section B Total [70]                                                                                                                                    |
|         | END OF PAPER                                                                                                                                            |
|         |                                                                                                                                                         |
|         |                                                                                                                                                         |
|         |                                                                                                                                                         |
|         |                                                                                                                                                         |



© WJEC CBAC Ltd.

## **BLANK PAGE**

# PLEASE DO NOT WRITE ON THIS PAGE



| Question number | Additional page, if required.<br>Write the question number(s) in the left-hand margin. | Examine only |
|-----------------|----------------------------------------------------------------------------------------|--------------|
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        | I            |



| Question number | Additional page, if required.<br>Write the question number(s) in the left-hand margin. | Examiner only |
|-----------------|----------------------------------------------------------------------------------------|---------------|
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        | ·····         |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        | ······        |
|                 |                                                                                        | <b>.</b>      |
|                 |                                                                                        | <b>.</b>      |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        | ·····•        |
|                 |                                                                                        | <b>.</b>      |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |



## **BLANK PAGE**

# PLEASE DO NOT WRITE ON THIS PAGE





## **GCE AS/A level**



## **CHEMISTRY - PERIODIC TABLE** FOR USE WITH CH1

A.M. FRIDAY, 22 May 2015

# THE PERIODIC TABLE

|                 | 0 2   | 4.00<br>He Helium                | a le                             | Cl Ar<br>Chlorine Argon | Ps.9 83.8 Rr Kr Kr Bromine Krypton 35 36 | 127 131<br>  Xe<br>  Xenon<br>  53 54      | (210) (222) At Rn Astatine Radon 85 86 | ,                                       | <b>↑</b>                          | riu<br>(                                 |
|-----------------|-------|----------------------------------|----------------------------------|-------------------------|------------------------------------------|--------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------|------------------------------------------|
|                 | 9     | ock                              | e e                              | Sulfur Chlo             | Se B Bror Selenium Bror 34               | 128 12<br><b>Te</b> 12<br>Tellurium lod 52 | (210) (21 <b>Po A</b> Polonium Asta    |                                         | Yb Lu Ytterbium Lutetium          | (254) (257) No Lr Nobelium Lawracium 102 |
|                 | 2     | p Block                          | 14.0 Nitrogen 7                  | Phosphorus<br>15        | 74.9<br><b>As</b><br>Arsenic             | 122<br>Sb<br>Antimony<br>51                | 209<br>Bi<br>Bismuth                   |                                         | 169<br>Tm<br>Thulium<br>69        | (256) Md Mendelevium 101                 |
|                 | 4     |                                  | 12.0<br>C<br>Carbon<br>6         | Silicon<br>14           | 72.6<br><b>Ge</b><br>Germanium<br>32     | Sn<br>Tin<br>50                            | 207<br><b>Pb</b><br>Lead<br>82         |                                         | 167<br>Er<br>Erbium<br>68         | (253)<br>Fm<br>Fermium<br>100            |
|                 | က     |                                  | 10.8<br>B Boron 5                | Aluminium 13            | 69.7<br><b>Ga</b><br>Gallium<br>31       | 115<br>Indium<br>49                        | 204<br>TI<br>Thallium<br>81            |                                         | 165<br>Ho<br>Holmium<br>67        | (254)<br>Es<br>Einsteinium<br>99         |
| Щ               |       |                                  |                                  |                         | 65.4 Zn Zinc 30                          | Cd<br>Cadmium<br>48                        | 201<br>Hg<br>Mercury<br>80             |                                         | 163<br>Dysprosium<br>66           | (251)<br>Cf<br>Californium<br>98         |
| TABI            |       |                                  |                                  |                         | 63.5<br>Cu<br>Copper<br>29               | Ag Ag Silver                               | 197<br><b>Au</b><br>Gold<br>79         | f Block                                 | 159<br><b>Tb</b><br>Terbium<br>65 | (245)<br>BK<br>Berkelium<br>97           |
|                 | Group |                                  |                                  |                         | 58.7<br>Nickel                           | 106<br>Pd<br>Palladium                     | 195<br>Pt<br>Platinum<br>78            | F                                       | 157<br>Gd<br>Gadolinium<br>64     | (247)<br>Cm<br>Curium<br>96              |
| HE PERIODIC TAB |       |                                  |                                  |                         | 58.9<br>Co<br>Cobalt<br>27               | 103<br>Rh<br>Rhodium<br>45                 | 192<br>  Ir<br>  Iridium<br>  77       |                                         | (153)<br>Europium<br>63           | (243) Am Americium 95                    |
| H<br>H          |       | V                                | mass<br>mass<br>atomic<br>number | d Block                 | 55.8<br>Fe<br>Iron<br>26                 | 101<br>Ru<br>Ruthenium<br>44               | 190<br>Os<br>76                        |                                         | Samarium 62                       | (242)<br>Pu<br>Plutonium<br>94           |
| F               |       | Key                              | Symbol Name                      | d<br>B                  | Manganese 25                             | 98.9<br>TC<br>Technetium                   | 186<br><b>Re</b><br>Rhenium<br>75      |                                         | Promethium 61                     | (237)<br><b>Np</b> Neptunium 93          |
|                 |       |                                  | 65                               |                         | 52.0<br>Cr<br>Chromium<br>24             | 95.9 Mo<br>Mo<br>Molybdenum<br>42          | 184<br>W<br>Tungsten<br>74             |                                         | Neodymium<br>60                   | 238<br>U<br>Uranium<br>92                |
|                 |       |                                  |                                  |                         | 50.9<br><b>V</b><br>Vanadium<br>23       | 92.9<br><b>Nb</b><br>Niobium<br>41         | 181<br><b>Ta</b><br>Tantalum<br>73     |                                         | 141<br>Præedymium<br>59           | (231) Pa Protactinium 91                 |
|                 |       |                                  |                                  |                         | 47.9<br>Ti<br>Titanium<br>22             | 91.2 <b>Zr</b> Zirconium 40                | Hafinium 72                            |                                         | 140<br>Cerium<br>58               | 232<br>Th<br>Thorium<br>90               |
|                 |       | <b>A</b>                         |                                  |                         | Scandium 21                              | 88.9<br><b>Y</b> Yttrium 39                | 139 La La La La La Lanthanum           | (227)<br><b>Ac</b> ►►<br>Actinium<br>89 | ► Lanthanoid elements             | ►► Actinoid elements                     |
|                 | 7     | A                                | 9.01<br>Beryllium<br>4           | Mg<br>Magnesium<br>12   | 40.1<br>Ca<br>Calcium<br>20              | 87.6<br><b>Sr</b><br>Strontium<br>38       | 137<br><b>Ba</b><br>Barium<br>56       | (226)<br><b>Ra</b><br>Radium<br>88      | - Fa<br>•                         | ∢ υ                                      |
|                 | _     | s Block<br>1.01<br>H<br>Hydrogen | 6.94<br>Li<br>Lithium<br>3       | Na<br>Sodium<br>11      | 39.1<br><b>K</b><br>Potassium<br>19      | 85.5<br><b>Rb</b><br>Rubidium<br>37        | 133<br>Cs<br>Caesium<br>55             | (223) <b>Fr</b> Francium 87             |                                   |                                          |
|                 |       | Period 1                         | 7                                | က                       | 4                                        | 5                                          | 9                                      |                                         |                                   |                                          |
|                 |       | Pe                               | © WJEC CBAC                      | _td.                    | (1091-0                                  | 1A)                                        |                                        |                                         |                                   |                                          |